数据驱动的油浸式变压器评估与寿命预测

Data-Driven Evaluation and Life Prediction of Oil-Immersed Transformers

  • 摘要: 结合双向长短期记忆网络(Bi-LSTM)与基于Weibull分布的统计方法,提高油浸式变压器状态评估准确性并预测剩余寿命。总结数据驱动的设备故障状态评估与寿命预测方法,确定变压器特征状态转移序列,构建Bi-LSTM模型用于故障评估,利用Weibull分布建立寿命预测模型,并以实际数据验证有效性。

     

    Abstract: This study combines the Bidirectional Long Short-Term Memory Network (Bi-LSTM) with statistical methods based on the Weibull distribution to improve the accuracy of condition assessment of oil-immersed transformers and predict their remaining useful life. It systematically summarizes data-driven methods for equipment fault condition assessment and life prediction, determines characteristic state transition sequences of transformers, constructs a Bi-LSTM model for fault assessment, establishes a Weibull-based life prediction model, and validates the effectiveness with actual data.

     

/

返回文章
返回