电气时代网 电气时代网 电气时代网

智能低压断路器的研发及应用

在低压配电网中,配电分支节点的智能低压断路器除了保护功能外,还实现了测量、通信和控制功能。一二次融合技术在低压断路器上的实现,简化了低压配电网络的设备种类和通信接线。大全集团凯帆开关采用该思路设计了一种新型智能塑壳断路器方案,融合了高精度测量及宽带电力载波通信的功能。

作为低压配电网中的关键设备,低压断路器起着保护和能量分配的作用。按照保护装置类型分为热磁式和电子式断路器,根据保护功能分有电流保护断路器和漏电及电流保护断路器。其现状与存在的问题如下:

1)热磁式断路器仅具有两段式保护,保护参数难以准确设置,需要级差保护的场合不能方便设置。故障发生时,容易越级跳闸,停电范围扩大。

2)热磁式断路器在线路出现过载故障保护后,需要经过时间冷却后才能重新合闸,在环境温度较高的场合,无法快速恢复供电。

3)电子式断路器目前还无法满足低压配电网络节点的要求,通信功能受制于现场条件大部分没有实际使用。

4)低压断路器的测量功能不足,对于电压、电流、电量以及温度不能精确测量。外置式互感器及二次设备在现场大量使用,增加了台区建设成本和维护成本。

5)低压断路器通信接口及通信规约不统一,设备布线调试周期长,通信不可靠。

6)由于市场竞争激烈,一味低价促销导致目前的低压断路器产品质量参差不齐,低档化严重。

智能低压断路器的定义

目前,无论是电网还是工矿企业、医院和数据中心等都对配电智能化提出了更高的要求。同时,节能增效、自动化运维、精准故障定位和诊断等配电智能化的方案更是对低压断路器提出了更高的智能化要求。大全集团自主断路器品牌凯帆开关认为,智能断路器应该保护更可靠、感知更全面、组网更便捷以及功能更集成。图1示为凯帆开关研制的智能低压断路器。

图1 凯帆开关的智能低压断路器

1.更可靠的保护才是智能化的基石

万能式断路器已全面使用电子脱扣器,但其中占比较大的还是以电流过载保护、短路保护为主的经济型电子脱扣器。塑壳断路器中正在大量使用的还是机械式的热磁脱扣器,由于热元件、磁性材料的一致性较差,断路器对于故障电流的保护只能在一定的宽范围内,很难做到精准保护。同时,由于无法实现短路电流延时动作,传统断路器很难做到选择性保护。随着电子脱扣器应用占比的逐年上升,塑壳断路器的电子脱扣器已经较热磁脱扣器在保护的多样性上有所提升,但是和万能式断路器一样,还是仅限于以电流过载保护、短路保护为主的经济型电子脱扣器。

稍微高级一些的电子脱扣器为实现更多保护功能,一般还会引入电压测量,从而实现以电压为基础的保护,如过压、欠压和缺相等。大多数的故障可以由电流、电压的异常来判断,但是还有一部分隐患没有表现在上述两个参量上,这就需要借助其他参量,例如母线温度。为此,凯帆开关通过集成于断路器内部的温度传感器采集母线温度,用母线温度单独或者结合母线电流、电压判断用电系统故障,形成报警或者脱扣。

除了保护以外,凯帆开关最新的智能电子脱扣器还对自身进行自检以及附件进行实时状态的监测,如分励脱扣器、合闸线圈、欠压脱扣器和储能电机等线圈的断线监测,以主控芯片为核心的通信检测、内存检测、磁通断线检测和主控芯片超温等一系列内部自检。为了避免主控芯片的实效风险,保护断路器本体还加入了基于硬件电路的接通电流脱扣器(MCR)功能和高设定值瞬动短路保护(HSISC)。

2.更全面的感知才是智能化的数据基础

测量电流、电压可以用来保护和提高精度,还可以实现等同于多功能表的功能。低压断路器本身内部结构紧凑,剩余空间不规则等因素限制了测量互感器的内置,但是随着新材料的发展以及加工工艺水平的提升,使得测量互感器内置成为可能。高精度测量互感器加上精密采样电阻以及信号处理电路,让智能断路器可以实现0.2s级的电能测量。同时还可以计算出有功功率、无功功率、总功率、需用功率、功率因数、频率、电量和电压,电流2~32次谐波、电流谐波总畸变率、电压2~32次谐波以及电压谐波总畸变率等。

凯帆开关除了上述参量的高精度测量功能,还具备断路器状态检测,实现了分闸、合闸及脱扣三状态全面感知。在保护中提及的母线测温功能,可在20~150℃范围内误差做到±1℃。

3.更便捷的组网才是智能化快速发展的催化剂

组网的便捷体现在两个方面,一是免接或者少接通信线,即便捷安装;二是免调试或者少调试,即便捷调试。

免接或者少接通信线会用到微功率无线通信,或者电力线载波通信方式。几种通信方式有着各自的优势和特点:电力线载波适合长距离通信,有网随电通的特点,同时,依靠通信网络和电力网络共用的特点,还可以在一定程度上理顺电力拓扑结构;微功率无线通信作为电力载波通信的补充,在电力线上干扰信号对载波信号影响严重的场合下,电压设备通过无线通信。在该局域网内增加边缘计算器,可实现边缘控制。

如果通信地址唯一,数据模型明确,那么便可实现系统集成商或者电力成套公司的通信免调试工作。万物互联的时代已经开启,借助于IPv6技术,可以给电力物联网的每个节点划分一个唯一地址,而数据模型各断路器厂商又是明确的,因此随着电力物联网的发展,通信调试工作必然越来越方便。

智能低压断路器的设计原理

凯帆开关的新型高精度测量智能塑壳断路器采用了一二次融合思路,保护和测量独立设计。如图2所示,新型智能塑壳断路器由断路器本体、保护模块、保护互感器、测量模块、电流测量互感器、电压调理模块和电流调理模块构成。保护模块负责完成与保护相关的数据采集,实时计算和监测断路器状态。测量模块负责电压、电流采集计算,以及电量、谐波、功率和功率因数等电参量的实时计算。

图2 断路器结构图

参量的实时计算。保护电流互感器磁芯采用了硅钢叠压的处理。由于电流保护的范围较大,一般到5倍左右,电流互感器产生了部分饱和现象。反应出来的一二次电流曲线为非线性的特点,需要根据保护互感器的二次电流输出特性,采用二次曲线拟合方式对保护互感器进行校正。具体公式如下

Y=aX2 +bX+c

其中,X为一次侧电流值,Y为修正后的二次侧电流值,a、b和c为二次曲线参数。曲线拟合法可以对被测电流信号进行较为精确地修正,扩大保护的范围,为电力线路的保护提供可靠的检测信号。

由于塑壳断路器内部空间有限,电流测量互感器设计受到严格的结构尺寸限制,在互感器磁芯材料选择上选择饱和磁感强度大、磁导率高的铁基纳米晶材料缩小互感器的尺寸。纳米晶材料为一种新型软磁材料,具有饱和磁感应强度高、量程宽、精度高、工作温度范围宽及频率特性稳定的特点。

独立的测量电流互感器加上高集成度的测量电路使得塑壳断路器这类线路保护设备在保持原有产品尺寸的前提下,具备了测量能力。测量及显示通信电路具有独立于保护电路的电源供电回路,使塑壳断路器的可靠性得到提升。

智能低压断路器的通信方式

作为低压配电网络的重要设备,低压断路器的通信方式比较单一,以RS485通信为主。这种通信方式的优点是通信稳定可靠,通信成功率较高。但其缺点也很明显,部署调试以及运行维护的成本较高。新一代智能断路器的通信功能为实现数据交互的实时性、准确性和安全性等特点,通信功能必须具备高效率、高带宽、高可靠和低功耗等性能特点。

1)高效率:低压断路器在现场数量多,一个低压台区低压断路器之间的距离最大可达500m。快速高效的组网是首要考虑因素。

2)高带宽:由于配电台区终端低压设备数量多,智能配变终端与低压设备交互频繁,传输的数据量将是非常庞大的,对通信传输有较高的要求,在高速传输的同时有着高带宽的需求。

3)高可靠:通信电路集成于低压断路器内部应具有耐高温、耐湿和防尘;通信电路还应能抵抗噪声、电磁和雷电等干扰,保持稳定运行以及数据的不间断性和准确性;在低压断路器发生跳闸时,应能抵抗事故所产生的瞬间强电磁干扰。

4)低功耗:支撑低压断路器停电上报业务需求,满足停电期间告警信息上报。

5)低压电力线宽带载波(LVPLC)通信是利用低压电力配电线(380/220V用户线)作为信息传输媒介进行数据传输的一种特殊通信方式。

①低压电力线宽带载波路由合理,通道建设投资相对较低。

②低压电力线宽带载波通道带宽较宽,传输速率较高,比窄带载波性能更优良。

③传输频段不受限,带宽范围内频段自适应。

④受外界电力网络干扰小,低压电力线载波干扰频段限制在1MHz以下,而低压电力线宽带载波是建立在1MHz以上带宽的,低压宽带电力载波的基本频带为1~20MHz,扩展频带为3~100MHz,即可有效避免对外界的干扰。

⑤不需要重新架设网络,只要有电线就能进行数据传递,运用维护应用成本低。

智能低压断路器集成宽带电力载波通信技术,只需要按照常规方式安装,即可实现通信链路的建立。低压断路器作为保护器件,分断后应保持通信链路的畅通,以防止下游设备的重要信息丢失。

低压电力线宽带载波耦合器利用信号变压器和电容耦合网络,并在断路器的断点之间,在断路器分断后,对于50Hz的交流电起到完全的隔离作用。断点之间的耐压值达到8kV,符合低压断路器的隔离要求。

如图3所示,利用信号变压器及电容网络搭建起对2~12MHz的一个高通信号通道,经过试验验证HPLC载波信号通过4级耦合网络,通信仍可以正常传输,解决了断路器多级连跳,近故障侧断路器数据不能上传的问题。

图3 电力线载波耦合模块

应用及结论

凯帆开关研制的高精度智能塑壳断路器已经在多个台区进行了验证(如图4所示)。现场验证显示,该产品的优势主要体现在以下几方面:

图4 智能低压断路器应用现场

1)传统低压柜内外置CT占用了抽屉柜巨大的空间,同时配合电能表测量低压柜出线电压、电流,接线复杂,柜门表显示数据较为单一。智能低压断路器配备柜门显示单元使该方案得到简化,接线方便,无外置电流互感器。同时,柜门显示单元除了显示电压、电流和电能外还可以显示断路器状态、断路器故障信息、事件记录和谐波等。

2)台区拓扑是台区管理的基础,线路损耗、窃电和故障定位等应用前提是有一个清晰明确地台区拓扑图。智能低压断路器依靠自身高精度的测量功能和实时通信能力,对于负载的特征可以进行有效的辨识。台区分路关系根据负载的特征通过配变终端的算法可以得到理清。对于台区的层级关系根据施工时的地址设定配变终端可以有效辨识。这种实施方案可以有效减少拓扑识别的模块施加,减少台区建设成本和施工、调试及维护成本。同时由于依靠负载侧用电特征,无需额外注入特征信号,保障台区用电安全,防止漏电保护动作。

3)智能断路器强化了线路故障研判能力。全面感知的智能断路器对于线路故障具有强大的研判能力,可对线路的电流短路、过载、漏电、电压失压、过压、缺相、闪变、接线超温、谐波、人为分闸、手动脱扣、远程分闸和试验跳闸等诸多故障进线研判。通过拓扑关系,快速定位故障点,缩短了故障抢修时间。

4)智能断路器强化了设备自身管理能力。全面感知的智能断路器加强了自诊断能力。对于断路器的线路板温度、电子元件故障、断路器本体寿命以及自身运行时间实时统计,这些信息通过配变终端进行采集。经过主站计算可以得到资产净值和资产折损率,精确评估当前设备的状态、设备健康情况,形成体系,提前有序制定设备维护、更换计划。

5)智能断路器强化了线路异常的监测能力。具有精确测量能力的断路器通过对配电网络分支节点的电压、电流和电量的实时监测,通过边侧配变终端的计算,实现了线路拓扑对异常变动的实时感知能力。低压台区拓扑的变更、窃电行为的实施,破坏了之前拓扑结构中的能量守恒,形成异常事件。线路异常事件精确定位并实时上报主站,形成派工单,进行线路异常点的排查。

由此可以看出,智能断路器在台区的实施具有明显的提质增效的作用。在提高台区管理效益的同时,减少了分路检测单元、温度传感器、柜门计量表、外置式CT、拓扑识别仪和末端感知终端等二次设备的使用,具有较高的实用价值和较好的经济性。